Category Archives: Uncategorized

3D Print-Based Silicone Mold Culinary Study

This is a continuation of  Melting Materials for Mold Making, where we describe some of our experiments to create molds of wax, chocolate, and jello using 3D printed models and silicone molds, and 3D-Designed Molds for Baking and Freezing, where we experiment with baking and freezing food using silicone molds.

Our focus is using 3D prints to fabricate molds for culinary exploration. To determine what types of 3D designs and recipes work well to create customized, detailed dishes, we held a workshop with culinary enthusiasts.

Participants were invited to attend a workshop, which introduced them to our software system and workflow for generating 3D food molds. Over the course of the following week, they submitted drawings and photographs to be converted into 3D prints by our system. The participants then experimented with different recipes in their own homes, and kept in touch with the group by sharing their designs and recipes through a private group on a social network. During this time, they also had the option to create additional designs, and those were 3D printed and made into silicone molds for them to experiment with.

Types of Molds and Designs

The most common participant requests were to make multiple silicone molds of each print, create interconnected designs, and fabricate additional silicone molds of household items.

Several of the participants requested the option to make multiple silicone models of each 3D design. While it takes 2-3 hours to create one of the 3D prints, each silicone mold can be made in about thirty minutes. As such, participants were able to make several silicone molds from a single 3D print. This is a clear benefit of using molds over directly 3D printing the food, since having multiple molds allowed the participants to have several copies of the food design made simultaneously, whereas a 3D printer can only create one copy at a time.

Participants also noted the usefulness of interconnected designs. Such designs are beneficial because they allow relatively simple designs to be multiplied into complex forms, and, by changing the number of molds used, allow meals to be scaled to the needs of the person cooking.

below: examples of interconnected designs

p1-1-cornbread1.jpg  fan-1-silicone.jpg  model3-PB&J popsickle.jpg

In addition to making molds from 3D prints, two participants also made silicone molds of household objects. The downside of deeper shapes is that they limit the types of food that can be molded. In order to remove the original reference object, the silicone mold had to be cut in half and then pressed together when the food mold is being set. While this works for thick batter or melted chocolate, participants found that materials like liquid gelatin or egg whites will leak out through any cuts in the silicone mold before they have time to harden.

below: example of molds made from household objects

p5-3-silicone.jpg  p5-4-silicone.JPG  p5-3-chocolate1.jpg

Recipes and Food Experiments

Most of the participants focused on single-ingredient foods that could easily transform from a liquid to a solid state, such as chocolate, egg yolk, gelatin, pancake, and flan. As our participants discovered from their experiments, other materials, such as wonton wraps, can also be shaped in the models, though they require the use of simpler molds composed of smooth surfaces.

below: example of wonton wraps

p2-1-silicone1.jpg  p2-1-wraps5.jpg  p2-1-wraps6.jpg

For designs, participants suggested using food appearance and shape to encourage diners to make healthy choice. In addition, they were interested in using the shape of the food  to confuse or intrigue the diner as to what taste they may encounter.

Limitations

Overall, our participants’ experiments revealed that molds with smooth surfaces worked well universally, whereas molds with fine details worked best with frozen and gelatin based foods. Hot foods were the most problematic, as they are often soft and difficult to remove form the molds. Depending on the ingredients, it may be more effective to freeze the meal into the mold, remove it, and then re-heat the food.

Future Opportunities

In the future, 3D models can be tailored more specifically to the foods they are applied to. For instance, our software might be altered to preview several different 3D models from one 2D image to show variable levels of detail and depth. Each 3D model could then be customized to maximize detail based on the specific attributes and limitations of the different foods being worked with. That way, culinary enthusiasts could visualize and compare what the finished dish would look like depending on their design and choice of ingredients.

below: examples of same molds being used to make different foods. In the future, models could be generated to best serve different food materials

p6-1-shortbread cookie4.jpg  p6-1-egg2

fball-poached eggs2.jpg  fballs-agar2.jpg

Since our participants enjoyed and appreciated the social-sharing aspects of this study, it could be beneficial to create a broader social sharing platform to aggregate 3D designs and recipes, thereby scaffolding a broad base of knowledge to advance and expand what food enthusiasts can create.

In addition, our approach offers insights for developing future high fidelity food-based 3D printing technologies. For example, our study shows that there is a definite interest in providing healthier options, as well as a desire to create several portions simultaneously in order to facilitate a shared dining experience. This indicates that future food 3D printers could focus on offering expanded food options outside of sweets and treats, and explore ways of generating food that encourages a communal, rather than isolated, dining experience.

Since food 3D printing technology could potentially become ubiquitous in future years, it would be prudent to make sure the technology does not inhibit, and hopefully tacitly encourages healthy eating and social engagement.

 

Advertisements

Solar Cooking IOS App for Recipes and Ovens

The solar cooking app is meant to be a tool to conveniently document recipes for solar cooked meals as well as designs for solar ovens. It allows solar cookers to store their recipe/oven designs, share them with others, and interact with other solar cookers. The iOS application most importantly focuses on the differences between conventional cooking and cooking food using the sun. This enables easy, and quick creation of recipes while still maintaining accuracy.

Screen Shot 2017-06-29 at 8.40.29 PM    Screen Shot 2017-06-29 at 8.41.13 PM

Figure 1                                                              Figure 2

The app in its current version has a login view (figure 1) that allows login using Facebook, a main view (figure 2) that displays all the recipes/ovens added to the app so far, as well as the buttons to navigate to other functionalities. More details about the recipe (Figure 3) is possible by tapping a recipe. Viewing, and potentially editing, the logged in user’s own profile (Figure 4) is possible by tapping the settings button. Searching all existing recipes (Figure 5) according to a wide variety of constraints is possible through the search button. Finally, adding a new recipe/oven (Figure 6) is possible through the + button.

Screen Shot 2017-06-29 at 8.45.55 PM    Screen Shot 2017-06-17 at 12.17.54 AM

Figure 3                                                           Figure 4

In order to gauge our target solar cooking app users on their experiences using the app and what they would want an app geared specifically for solar recipes to offer, our team conducted a workshop to help understand what the targeted users need out of such tool. Throughout the workshop, our team learned about the different things to consider while using the sun’s heat to cook. This allowed for a compiled list of possible attributes a recipe could have, including but not limited to: oven type, A recipe has to be custom geared to work with a particular oven type; outside temperature, differentiated from internal temperature of oven cooking compartment, could define the success chances of a recipe; Altitude; and tags to represent the need for redirection of the oven, potentially replaceable by a frequency of redirection attribute. Some fields apply for recipes as well as ovens.

During the workshop, users were also prompted to use the app’s version at the time; their interaction with the app was used to discover some issues with the flow and cosmetic appearance of the app. The workshop solar cooker attendees’ interaction with the app helped pave the way for new ideas to aid the upcoming user interface development.

Screen Shot 2017-06-16 at 11.40.44 PM   Screen Shot 2017-06-16 at 11.45.38 PM

Figure 5                                                         Figure 6
We hope to have an initial version/prototype of the app available to users for testing this summer of 2017. By then, it is our aim to have a polished app that, in addition to the main functionalities mentioned, also allows commenting on recipes and ovens posted to the app. In an effort to continuously improve the app, testers will be encouraged to submit their experience with the interface and suggest any ideas or improvements that could help us make the app better.

BioDesign Challenge

On July 12th,  the students of ASU Digital Culture and The Design School have presented their LIFE/LIGHT project at the Biogesign Challenge summit in MOMA, New York. The project was developed at AME 410 Interactive Materials course and finalized for the competition.

The summit happened for the third time, engaging enthusiasts that combine design with biotechnology. It is one of the largest biodesign events in the US and brings the attention of the growing community of designers and researchers.

Around twenty teams have participated in the Challenge this year from various schools and countries. The 1st prize was taken by the team from Central Saint Martins, UK, that have presented the concept of Quantumworm Mines. The runners-up were the students of  University of Edinburgh, UK with the research project “UKEW 2029” that showed parallels between biology and socio-political trends.

 

ASU project researched the potential of bioluminescent unicellular organisms and scrutinized the issue of co-habitat and control in a man-made environment. LIFE/LIGHT is an algae-driven living building system that produces fuel and light if properly taken care of.

We were designing in the middle-ground between an artifact, living nature, and humanity where the behavior of each component of the system influences its performance. (See figure 1.)

01

Figure 1. Concept diagram.

Choosing our components within the broad fields of nature and artifacts, we decided to look into the relationships between dinoflagellate, a capricious algae creature that illuminates ocean in a number of coastal cities, including San Diego, and architecture as a medium for most of the human activities.

LIVING ARCHITECTURE

With the increasing concerns about ecology, the notion of living architecture arises. In the age of Anthropocene, living buildings adapt to the constant flux of technological, social and environmental conditions through integration with living nature.

The best example of such thing, probably, would be the rice paddles in South Vietnam (image 1), a sustainable artifact of agriculture and built environment that existed for centuries.

pexels-photo-247261.jpeg

Image 1. Rice paddles in South Vietnam, stock photo.

Among other inspirational examples are the Algae-fueled building in Hamburg designed by ARUP (image 2), the proposal by Mitchell Joachim for homes grown like plants (image 3), and the interactive installation by David Benjamin that visualized ecological conditions for the citizens of Seoul (image 4).

algae-building

Image 2. BIQ algae-powered building in Hamburg, image courtesy of ARUP.

M_Joachim_FabTreeHab.jpg

Image 3. FabTreeHub, image courtesy of Mitchell Joachim.

light_02.jpg

Image 4. Living Light, Seoul, image courtesy of David Benjamin and The Living New York.

DINOFLAGELLATE

02.jpg

Image 5. Bioluminescent dinoflagellate, stock photo.

Dinoflagellates are unicellular algae plankton chosen for the LIFE/LIGHT project due to the its qualities:

Bioluminescence

blue-jellyfish-bioluminescence-iphone-6-plus-hd-tentacles-18.jpg

Image 5. Bioluminescent jellyfish, stock photo.

Bioluminescence is the ability of living organisms to produce light. The “cold light” produced by dinoflagellate is done without wasting energy compared to conventional
electrically generate light.

When agitated by movement, algae colony produces light for a short perious of time.

CO2 Consumption

Dinoflagellate photosynthesis is capable of converting CO2 in glucose. This provides residual potential energy within cultures longer after decay.

Conversion to biofuel

Dinoflagellates may contain large amounts of high-quality lipids, the principal component of fatty acid methyl esters. The harvest of these organisms provides a suitable choice as a bioresource for biodiesel production.

Natural medium

Dinoflagellates are marine organisms that thrive in the natural medium of marine water. It makes them suitable for growth in the coastal cities with the use of natural salt water resources only.

ALGAE AT DAR

The dinoflagellates were grown in SANDS lab as part of the Digital Art Ranch at ASU.
This space supports DIY biology as well as other forms of researching interactive materials (image 6).

Capture.JPG

Image 6. The experience of working with dinoflagellates, photos from DAR.

Growing algae takes a lot of patience and attentiveness. Not only we had to keep in a specific medium for the lack of fresh marine water, but also synchronise its day and night cycles with the lab operating hours.

During the day cycle (~12 hours), photosynthesis happens, and algae transform CO2 into glucose. During the night cycle (~12 hours also), they multiply and show bioluminiscense if agitated. Like humans, dinoflagellates are active during the day, rest during the night, and are very irritated when their rest is interrupted.

The optimal living condition for dinoflagellate is a room temperature 18 to 24°C (65 to 75°F) and avoiding rapid temperature fluctuations. This was regulated using a white LED lamp, which can be changed for a cool white fluorescent light.

Challenges

Time was a limiting factor as cultures would take a week or two to regain its properties from packaging. This opened for the possibility that cultures order may have been non-lively upon arrival.

Also the time for sub-dividing cultures takes 3-4 weeks, again letting the subcultures regain their properties. Then when testing cultures, this would have to be done over a span of days to few weeks to determine the necessary action for culturing.

A typical dinoflagellate flash of light contains about 100 million photons and lasts about a tenth of a second. In a testing format, it is suggested to use a control amount and compare the luminous value on the scale of 10. Also, one has to be very careful not to “stimulate” the culture before you actually measuring their light output because the first time they flash they produce a lot more light than each successive flash.

Learned

Patience and constantly being aware of the cultures. The cultures can be unforgiving when they begin to use bio luminescence and taking additional time to recharge before seeing the effect again. Also there was a problem to document the effect during an appropriate time.For circadian rhythms to

For circadian rhythms to be aligned with documentation during the day. The cultures would be in a night cycle during the day. Causing a problem of space, we had to devise a small container that would keep temperatures low and block enough light pollution from the room it was placed in.

DINOFLAGELLATE BUILDING FACADE SYSTEM

The project is a living building system that is attached to buildings in coastal cities and relies on algae for light and fuel production. It utilizes ocean water resources as a medium for dinoflagellate. It consists of tubes filled with algae-infused fluid, distributed operational nodes that control the water flow and a controlling device.

uhj.JPG

Image 7. Facade system sketch

The system works in 3 different modus operandi: day, night and
harvesting organic residues for biofuel production.

sd

System elements

001.JPG002.JPG

Figure 2. System elements

Day mode

During the day, the water is supplied from the ocean water resources and distributed to the LIFE/LIGHT and other building systems, e.g. cooling. The algae-infused fluid flows into the tubes attached to a building facade and exposed to the sun.

003.JPG

Figure 3. Day mode

Night mode

At night, algae-infused water fills the interior tube system that prevents its exposure to
city night illumination. When moved, the fluid gives away cold light that supports quiet
night activities inside a building.

In this mode, the most interaction between a human and the system happens. Human and algae share the same habitat and have to live in harmony in order for the system to work. If the night cycle is distracted by a human’s late night activities, algae do not multiply. When a person moves within the space with the algae tubes, they also move, arousing bioluminescence and illuminating the space.

004.JPG

Figure 4. Night mode

Harvest mode

At the end of dinoflagellates life cycle, they become a residual organic matter that can be harvested in order to produce biofuel.

005.JPG

Figure 5. Night mode

Operational node

The node serves an illustration to a highway of tracks within a system.
There would be numerous tubes to ensure the cultures are filtering, harvesting and transport to the correct location.

df.JPG

Image 8. Operational node

Controlling node

Inspired by thermostats, the control unit provides a basis for displaying information and controlling additional systems in a house.

The 3 buttons would allow for the most critical options of the system to be chosen.
Additionally, the display provides a small sample of the dinoflagellates that would be tested. Depending on the condition of the sample and the previous sample was taken, the filter option could be accepted. Cycling the dinoflagellate culture and providing more medium.

dffff.JPG

Image 9. Controlling node

The origin of the design needed to resemble a simple form of communication to a user that performs maintenance with the architecture embedded system. Not only would it provide given information on the LCD screen but it has the ability to control other system operations as needed.

sdd.JPG

Image 10. Inspiration for the controlling node. Image courtesy of Honeywell.

The questions then are:

What is the boundary between an artifact and nature? Is the LIFE/LIGHT system alive?

Would you co-inhabit space in algae and adjust your habits so that both species thrive or control it remotely and transform living creatures into a utility?

The project was submitted by Loren Benally and Veronika Volkova and contributed by Jacob Sullivan and Ryan Wertz

AME to host TEI 2019

Our bid to host TEI 2019, the fourteenth International ACM Conference on Tangible, Embedded and Embodied Interaction at AME has been officially accepted!

tei2019_bid_web_final_page_01

We will host the conference in Tempe Arizona, a vibrant and growing Sonoran desert city. The main venue, the Tempe Mission Palms, is walking distance to the ASU Campus and in the heart of Tempe shops, bars, and galleries. The conference rooms, AV services, catering, palm courtyard, and rooftop pool reception deck will offer a flexible meeting space for academic and social gatherings during the conference. Phoenix is well known as an ideal winter destination, boasting average high temperatures in February ranging from 68 to 73 degrees Fahrenheit and a low chance of precipitation, while much of the rest of the northern hemisphere may be suffering from severe winter weather.

tei2019_bid_web_final_page_03

Hybrid Materials

Our bid proposed the theme of Hybrid Materials with the aim of strengthening transdisciplinary tries across the tangible interaction, HCI, material sciences, social sciences, and arts communities. Gaining increasing momentum over the last five years, the material turn and its effect within HCI has generated development in numerous fields of interest to the TEI community.

tei2019_bid_web_final_page_02

Over the past few years, TEI research has increasingly embraced hybridity, whether through material explorations of composites such as bioelectronic, on-body, or active materials, or theoretical inquiries into socio-technical systems as hybrid assemblies. The theme of Hybrid Materials will continue to catalyze this exciting trend of tangible interaction research at the intersection of social, technical, biological, and artistic systems. Topics focusing on hybridity in interaction design include but are not limited to:

  • active materials
  • materiality
  • material as interface
  • expressive computing
  • human perception
  • bioelectronic systems and interactions
  • on-body computing
  • new materialism
  • computer as material
  • sociotechnical assemblies
  • design things
  • seamful computing
  • hybrid sense-making
  • transdisciplinarity and HCI
  • rapid prototyping
  • participatory design
  • productive tensions in design

Thanks to everyone who helped and contributed to our bid. On behalf of AME, we are really excited and very honored to host the conference in 2019!

Our full bid document [PDF]

Bio workshop at HeatSync

Hi folks, as we are continuing our work in DIY biology with general public and non-professional biology hobbyists, last week Cass, Stacey and Me conducted a DIY bio workshop at HeatSync Labs in Meza, Az. HeatSync is a community driven maker-space, one of the coolest places I’ve ever been in Arizona. Unfortunately Matt couldn’t make it this time, even though he immensely contributed in organising and planning the workshop.DSC_0414.JPG

The first part of the workshop was about yoghurt fermentation. Cass explained the steps of yoghurt fermentation process and worked closely with the participants in the process. Here are some images.

Then we moved to the second part of the workshop – Gram staining. In this activity participants were asked to follow instructions printed on the card given by us, as well as Cass’ guidance. Everyone was so excited to see the microscopic images of the slides they have created, actually results were awesome!

 

While everyone was partying with bacterias in the downstairs, I was busy connecting the camera of our DIY incubator to the HeatSync WIFI network. Yes, now we have a WIFI camera inside our incubator as we promised in one of our earlier posts!

We left our incubator and some basic materials at heat syncs lab, so that they can play with them in the summer. Hopefully we will get some useful feeds from the camera too!DSC_0411

I’m Piyum, signing off and running to catch the flight to CHI 16 to present our Bio work there. More on that later! Thanks for reading.

Update:

Here we were at CHI 16 poster session.

13217398_1705030573089019_5515916533460933679_o

 

 

Art/ Science of cooking and sustainability.

Hey’all, this is Sunny and I am a new member in the growing family of the SANDS. I am an industrial design student at the Herberger’s and I potentially help in coming up with concepts and aesthetic models for the sustainable solar cooking research project. I assist in designing and finding new ways of using rich solar energy to our advantage and help community find new ways to use this energy for their cooking needs.

The first set of concepts looks into how we could take the french cooking technique “Sous-vide” and figure concepts that could help us in this regard.

So, what is sous-vide? well, Sous-vide is a method of cooking in which food is sealed in airtight plastic bags then placed in a water bath or in a temperature-controlled steam environment for longer than normal cooking times—96 hours or more, in some cases—at an accurately regulated temperature much lower than normally used for cooking, typically around 55 to 60 °C (131 to 140 °F) for meat and higher for vegetables – our friends at Wikipedia.

I started off by sketching different concepts and making a 3D model on SolidWorks and rendered them on KeyShot. From there we moved on to 3D printing the design for testing. The prints and the forms have come out well and it is on to testing and validating.

Stay tuned for the results!